Investigations on smoldering combustion at the RWTH Aachen

Ulrich Bielert

OUTLINE

• Research interests at the IAM
• Experimental investigation on smoldering combustion of cork
• Numerical simulations of combustion processes in packed beds
Research interests at the Institut für Allgemeine Mechanik (IAM)

- Shock tube investigations
 - measurement of ignition delay times of gaseous fuels (and droplets)
 - self ignition phenomena
 - interaction of shock waves with obstacles

- Turbulent flame propagation
 - Single stroke engine
 - Influence of turbulence on partially confined gas explosions
 - Influence of turbulence on dust explosions

- Surface processes
 - Chemical vapor deposition (CVD)
 - Condensation and evaporation of Iodine

- Bulk combustion
 - Combustion of graphite and effects of particle release
 - Smoldering combustion of cork in stagnation point flow
 - Ignition of heterogenous and homogenous reactions in packed beds
Smoldering combustion of cork in stagnation point flow

Willi Braunschädel

- Principle idea of experiment
- Experimental setup and procedure
- Data of Cork
- Example of measured data
- Results
 - Thickness of reaction zone
 - Smoldering velocity and maximum temperature
 - self ignition of pyrolysis gases
 - spark ignition of pyrolysis gases
 - analysis of pyrolysis gases
Spark ignition of pyrolysis gases

Pyrolysis gases could ALWAYS be ignited

- analysis of pyrolysis gases gives concentrations which should not allow ignition
- presence of smoke particles
Ignition of heterogeneous and homogeneous reactions in packed beds

Dirk Reinelt
Eckhard Scheidemann

- Physical System
- Governing equations (sorry)
- Heterogeneous reactions
- Homogeneous and heterogeneous reactions
Simplifications for packed bed

- constant particle density
- constant particle radius
- constant pressure in packed bed
- thermal equilibrium of particles and gas
- same constant c_p and D for all species
- no homogeneous reaction
Summary

- Experimental results for smoldering combustion of cork in a well defined stagnation point flow were presented:
 - smoldering velocity
 - smoldering temperature
 - Ignition and composition of pyrolysis gases

- Essential features of the interaction of homogeneous and heterogeneous reactions in a similar system with well known chemistry were numerically simulated
 - Governing equations were derived
 - Different modes of the system were identified
 - Influence of relevant parameters was investigated

- Lots of questions left for further investigations!